Correction by Projection: Denoising Images with Generative Adversarial Networks

نویسندگان

  • Subarna Tripathi
  • Zachary C. Lipton
  • Truong Q. Nguyen
چکیده

Generative adversarial networks (GANs) transform lowdimensional latent vectors into visually plausible images. If the real dataset contains only clean images, then ostensibly, the manifold learned by the GAN should contain only clean images. In this paper, we propose to denoise corrupted images by finding the nearest point on the GAN manifold, recovering latent vectors by minimizing distances in image space. We first demonstrate that given a corrupted version of an image that truly lies on the GAN manifold, we can approximately recover the latent vector and denoise the image, obtaining significantly higher quality, comparing with BM3D. Next, we demonstrate that latent vectors recovered from noisy images exhibit a consistent bias. By subtracting this bias before projecting back to image space, we improve denoising results even further. Finally, even for unseen images, our method performs better at denoising better than BM3D. Notably, the basic version of our method (without bias correction) requires no prior knowledge on the noise variance. To achieve the highest possible denoising quality, the best performing signal processing based methods, such as BM3D, require an estimate of the blur kernel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

DCGANs for image super-resolution, denoising and debluring

Advance of computational power and big datasets brings the opportunity of using deep learning methods to do image processing. We used deep convolutional generative adversarial networks (DCGAN) to do various image processing tasks such as super-resolution, denoising and deconvolution. DCGAN allows us to use a single architecture to do different image processing tasks and achieve competitive PSNR...

متن کامل

Label Denoising Adversarial Network (LDAN) for Inverse Lighting of Face Images

Lighting estimation from face images is an important task and has applications in many areas such as image editing, intrinsic image decomposition, and image forgery detection. We propose to train a deep Convolutional Neural Network (CNN) to regress lighting parameters from a single face image. Lacking massive ground truth lighting labels for face images in the wild, we use an existing method to...

متن کامل

Joint Demosaicing and Denoising with Perceptual Optimization on a Generative Adversarial Network

Image demosaicing one of the most important early stages in digital camera pipelines addressed the problem of reconstructing a full-resolution image from so-called color-filterarrays. Despite tremendous progress made in the pase decade, a fundamental issue that remains to be addressed is how to assure the visual quality of reconstructed images especially in the presence of noise corruption. Ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018